Heinz-Kato’s inequalities for semisimple Lie groups
نویسنده
چکیده
Extensions of Heinz-Kato’s inequalities and related inequalities are obtained for semisimple connected noncompact Lie groups. Mathematics Subject Index 2000: Primary 22E46; Secondary 15A45
منابع مشابه
Special Isogenies and Tensor Product Multiplicities
We show that any bijection between two root systems that preserves angles (but not necessarily lengths) gives rise to inequalities relating tensor product multiplicities for the corresponding complex semisimple Lie groups (or Lie algebras). We explain the inequalities in two ways: combinatorially, using Littelmann's Path Model, and geometrically, using isogenies between algebraic groups defined...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملSome exponential inequalities for Semisimple Lie group
Let ‖| · ‖| be any give unitarily invariant norm. We obtain some exponential relations in the context of semisimple Lie group. On one hand they extend the inequalities (1) ‖|e‖| ≤ ‖|eReA‖| for all A ∈ Cn×n, where ReA denotes the Hermitian part of A, and (2) ‖|e‖| ≤ ‖|ee‖|, where A and B are n×n Hermitian matrices. On the other hand, the inequalities of Weyl, Ky Fan, Golden-Thompson, Lenard-Thom...
متن کاملSemisimple Algebraic Groups in Characteristic Zero
It is shown that the classification theorems for semisimple algebraic groups in characteristic zero can be derived quite simply and naturally from the corresponding theorems for Lie algebras by using a little of the theory of tensor categories. This article is extracted from Milne 2007. Introduction The classical approach to classifying the semisimple algebraic groups over C (see Borel 1975, §1...
متن کاملL Version of Hardy’s Theorem on Semisimple Lie Groups
We prove an analogue of the Lp version of Hardy’s theorem on semisimple Lie groups. The theorem says that on a semisimple Lie group, a function and its Fourier transform cannot decay very rapidly on an average.
متن کامل