Heinz-Kato’s inequalities for semisimple Lie groups

نویسنده

  • Tin-Yau Tam
چکیده

Extensions of Heinz-Kato’s inequalities and related inequalities are obtained for semisimple connected noncompact Lie groups. Mathematics Subject Index 2000: Primary 22E46; Secondary 15A45

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special Isogenies and Tensor Product Multiplicities

We show that any bijection between two root systems that preserves angles (but not necessarily lengths) gives rise to inequalities relating tensor product multiplicities for the corresponding complex semisimple Lie groups (or Lie algebras). We explain the inequalities in two ways: combinatorially, using Littelmann's Path Model, and geometrically, using isogenies between algebraic groups defined...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

Some exponential inequalities for Semisimple Lie group

Let ‖| · ‖| be any give unitarily invariant norm. We obtain some exponential relations in the context of semisimple Lie group. On one hand they extend the inequalities (1) ‖|e‖| ≤ ‖|eReA‖| for all A ∈ Cn×n, where ReA denotes the Hermitian part of A, and (2) ‖|e‖| ≤ ‖|ee‖|, where A and B are n×n Hermitian matrices. On the other hand, the inequalities of Weyl, Ky Fan, Golden-Thompson, Lenard-Thom...

متن کامل

Semisimple Algebraic Groups in Characteristic Zero

It is shown that the classification theorems for semisimple algebraic groups in characteristic zero can be derived quite simply and naturally from the corresponding theorems for Lie algebras by using a little of the theory of tensor categories. This article is extracted from Milne 2007. Introduction The classical approach to classifying the semisimple algebraic groups over C (see Borel 1975, §1...

متن کامل

L Version of Hardy’s Theorem on Semisimple Lie Groups

We prove an analogue of the Lp version of Hardy’s theorem on semisimple Lie groups. The theorem says that on a semisimple Lie group, a function and its Fourier transform cannot decay very rapidly on an average.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009